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ABSTRACT 

The groups in the title are classified, provided they are not too highly transitive. 

Let G be a primitive permutation group on a finite set S of  n points. In 1871, 

Jordan initiated the study of  G under the additional assumption that there is a 

transitive subgroup H of  degree m, where 1 < m < n; that is, H fixes n - m 

points and is transitive on the remaining points. 

THEOREM 1. I f  m is a prime power, and G is not n - m + 1-transitive.. 

then G is one of  the following groups in its usual 2-transitive representation: 

a collineation group of P G ( d - 1 ,  q) containing PSL(d,q) ,  where d > 3; the 

fu l l  collineation group o] AG(d,2), where d >= 3; or a Mathieu group M22, 

Aut(M22), M23, or M24. 

This result contains several recent theorems found in [2], [3] and [4]. 

PROOF. G is 2-transitive on S ([7, p. 32]). By 12, Sect. 6], we may assume that 

G is not 3-transitive. Let B be the complement of  the given set of  m points, 

so I B[ = k = n - m. Let P be a Sylow subgroup of the pointwise stabilizer 

G(B) of B, so that P is transitive on S - B. By [2, (3.6)], the distinct sets B g, 

g E G, form a design ~ whose lines have more than two points; moreover, if B 

is not a line o f ~ ,  then planes o f ~  are well-defined and G is transitive on the set 

of  planes. 

Suppose first that B is a line o f ~ .  Let O e G be such that B n B ~ is a point x. 

Since P is transitive on the lines # B on x, the stabilizer P ,  of  B g in P has index 
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(n -- k)/(k - 1) < IS - B I in P. Hence, P1 fixes no point of S - B. We may 

assume that P1 normalizes Pg, and hence centralizes some z 4 1 in Z(Pa). Then 

B ~ = B as B is the set of fixed points of P1. However, pa is transitive on the lines 

B g on x, so z must fix each line on x. Also, z fixes each point o fB  ~ Consequently, 

by a theorem of O'Nan [5], ~ consists of the points and lines of a projective 

space P G ( d -  1, q), d > 3, and G contains PSL(d, q). Since I S - B  I is a prime 

power, d = 3. 

Now suppose B is not a line o f ~ ,  and let E be any plane meeting B in a line. 

Then the sets (E - B r3 E) h, h ~ P, partition S - B, so [ E - B t3 E l is a prime 

power. By [2, (3.10)], the global stabilizer of E in G induces on E a group inheriting 

our hypotheses. Thus, each plane is a projective plane, so the points and lines of 

form a projective space P G ( d -  1, q) (see Veblen and Young I-6]). Also, B is 

a subspace, and hence a hyperplane since IS - B I is a prime power. Consequently, 

G >__ PSL(d, q). 

By using a slightly more complicated argument (depending more heavily 

on [2]), we can generalize Theorem 1 as follows. 

THEOREM 2. Suppose G is a finite group primitive on a set S of n points. 

Let B c S, where I BI = k < n -  1, and assume that G is not k-transitive. 

Then G is as in Theorem 1 if either of the following holds for  the pointwise 

stabilizer G(B) of B: 

(i) G(B) has a nilpotent Hall  subgroup transitive on S - B; or 

(ii) There is a prime p l k - p ,  where # = m a x { I B t ~ B g l l B  # B g, g~G} ,  

and a Sylow p-subgroup P of G(B), such that CG(B)(t)I(Z(P)) is transitive on 

S - - B .  

Here, as usual, f l l(Z(P)) = {g eZ(P)]g  p = 1}. 

We will only sketch the proof, which is similar to that of Theorem 1. We will 

assume familiarity with [2, Sect. 3]. Since 1 < k - /~  I n - k for Jordan groups, 

(i) is actually a special case of (ii). Thus, assume (ii). We may assume that G is 

not 3-transitive. Let ~ denote the (geometric) lattice of intersections of families 

of blocks. 

Fix F = B c~ Ce  ~ '  with B and C blocks and IFI =/~" Let P be a Sylow 

p-subgroup of G(B), and PI the stabilizer in P of C. Since p I k - /~ ,  P l  fixes no 

point of S - B. Also, P1 normalizes a Sylow p-subgroup Q of G(C), and hence 

centralizes some z # 1 in ~I(Z(Q)). Since Cotc)(Z ) is transitive on S - C ,  while z 

fixes B, it follows that z fixes all blocks containing F. 
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Choose Y s L,e such that  Y _  F, z fixes all blocks containing F, and Y is 

minimal with respect to these conditions. Then Y # ~ ,  so we can choose X ~ A a 

maximal  in Y (where possibly X = ~ ) .  Note  that  G(X) is 2-transitive on S(X)  

= {YglX c Yg, g G). By [-5], S(X)  is the set o f  points o f  a projective space, 

o n which G(X) induces at least the projective special linear group. N o w  the theorem 

follows from I-2, Sect. 6]. 

Finally,  we remark that  it is very easy to use 1-5] to prove Theorem 2 if(i)  and (ii) 

are replaced by the condi t ion that  G(B) has an abelian subgroup transitive on 

S - B .  
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